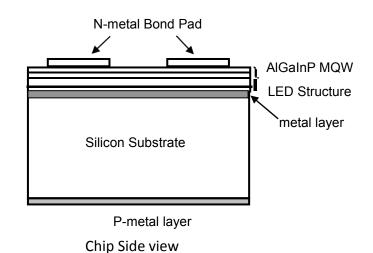

IN-F40IR-MH


1. Descriptions:

F40IR is an Infra-red LED chip made from MOCVD process and bonded with Silicon. It is fabricated by the s proprietary metal Bonding mechanism, F40IR is featured by homogeneous and high light output at top side with superior beam pattern. Excellent performance under sunlight and reliable life-long stability make F40IR ideal for IrDA, Encoder, data communication applications.`

2. Chip Diagram:

Chip pattern

3. Chip characteristics:

Substrate	Si		
Emitting material	AlGalnP		
p-pad electrode	Au-alloy		
n-pad electrode	Au-alloy		
Chip size	1000±25um × 1000±25um		
Chip thickness	180±15um		
Pad Diameter	110±15um		

4. Electrical and Optical Characteristics(Ta=25°C):

Parameter	Condition *1	Symbol	Min.	Тур.	Max.	Unit
Forward voltage	I⊧=350mA	V _{F1}	1.8	2.1	2.6	V
Threshold voltage	I⊧=10uA	V _{F3}	1.3	1.5	1.8	V
Reverse current	V _R =5V	IR	-	-	10.0	uA
Peak wavelength	I⊧=350mA	λ_{p}	650	-	750	nm
Half width *2	I⊧=350mA	Δλ	-	15	-	nm
Radiant Power *3	I⊧=350mA	Po	250	-	-	mW

Note:

- *1 IF: DC Forward current
- VR : Reverse voltage
- *2 Value of Half width is only for reference
- *3 Luminous Intensity is measured by HPO's equipment on bare chips.
- 4 Characteristic curves are measured on standard TO-39 package type without encapsure.

5. Characteristic Curves:

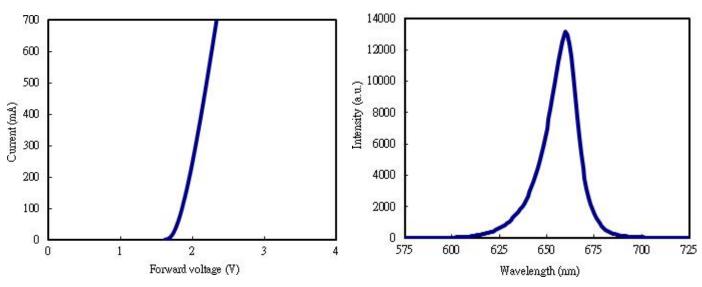
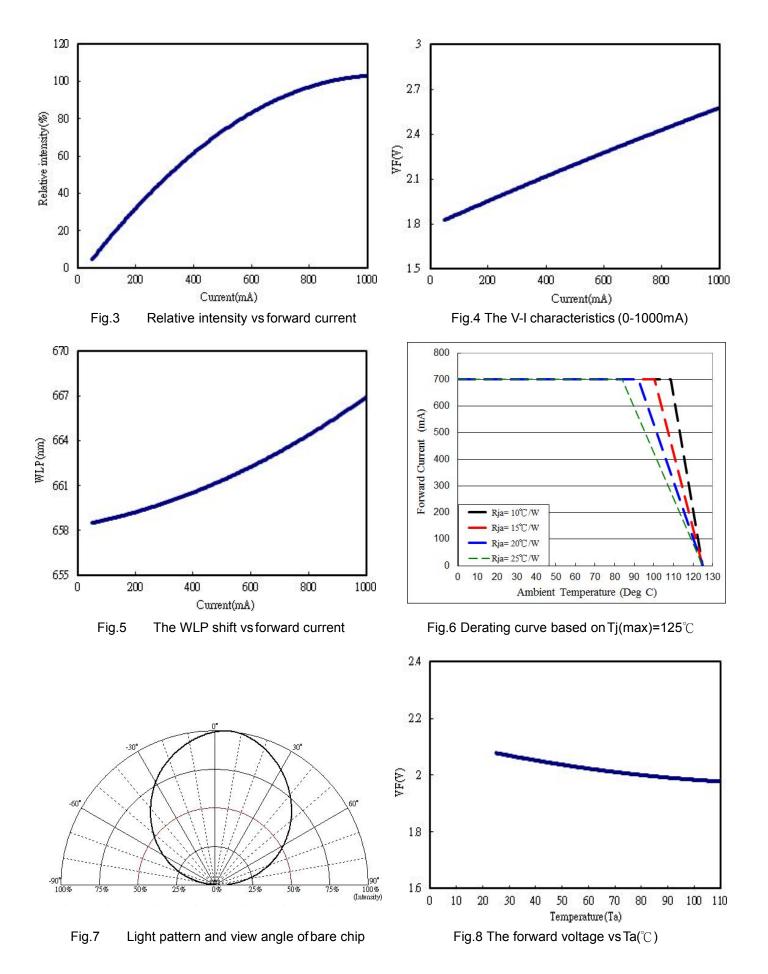



Fig.1 The I-V characteristics (0-700mA)

Fig.2 The ELspectrum

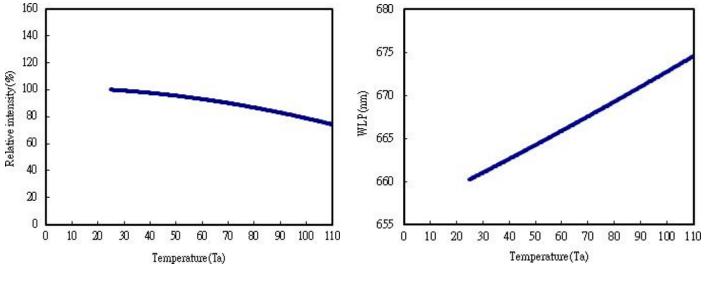


Fig.9 Relative intensity vs Ta(°C)

Fig.10 The WLP shift vsTa(°C)

6. Absolute Maximum Ratings(Ta=25°C):

Parameter	Symbol	Condition	Rating	
DC Forward Current	lf	Ta=25°ℂ	≦ 7 00mA	
Peak Pulsing Current	Ipeak	1/10 duty cycle @ 1kHz	≦1000mA	
Reverse Voltage	V_{R}	Ta=25°ℂ	≦10V	
Operating Temperature Range	Тор	-	-40°C to +85°C	
Storage Temperature Range	Tstg	Chip-on-tape/storage	+5℃ to +30℃	
		Chip-on-tape/transportation	-20℃ to +65℃	
LED Junction Temperature	Tj	-	≦125 ℃	
Temperature during Packaging	-	-	280°C (<10sec)	

Note: Maximum ratings are package dependent. The above maximum ratings were determined using a Metal Core Printed Circuit Board(MCPCB)

without an encapsulant. Stress in excess of the absolute maximum ratings such as forward current and junction temperature may cause damage to the LED.